
Leveraging Synthetic Data to Learn Video Stabilization Under Adverse
Conditions

(Supplementary Materials)

Abdulrahman Kerim1,2 Washington L. S. Ramos3 Leandro Soriano Marcolino1

Erickson R. Nascimento3,4 Richard Jiang1

1 Lancaster University, UK 2 University for the Creative Arts, UK 3 UFMG, Brazil 4 Microsoft
{a.kerim,l.marcolino,r.jiang2}@lancaster.ac.uk {washington.ramos,erickson}@dcc.ufmg.br

This document provides complementary results and
further details to enrich the analysis and discussion
provided in the main manuscript. Further statistics
and details regarding the collected real videos and the
generated synthetic sequences are given too. Addi-
tionally, qualitative video results are demonstrated on
the paper’s GitHub repository at https://github.com/A-
Kerim/SyntheticData4VideoStabilization WACV 2024.

1. Our Framework for Generating Synthetic
Data for Computer Vision Tasks

Our work deploys synthetic data to train a synthetic-
aware video stabilization algorithm. For that aim, we de-
veloped our novel simulator using the Unity game engine
to generate our synthetic training datasets VSAC65Synth
and VSNC35Synth. We employ the Procedural Content
Generation (PCG) concept to create a full 3D virtual world
at run-time while the system’s extensibility is attained by
taking advantage of the modular approach followed as we
built the system from scratch. Although our simulator can
provide clean, unbiased, and large-scale training and test-
ing data for various computer vision tasks, we focus on the
video stabilization task. A simplified flowchart describing
the scene creation process is shown in Figure 1.

Static Elements Starting from the given parameters, our
simulator initially creates the static part of the 3D virtual
world. In this part, first the street length and the number of
crosses are set at random. Following this, the buildings are
created where buildings’ locations, types, and frequency
are set at random. After that, the other scene elements
like benches, trash containers and bags, trees, and other
elements are created. To further improve the realism and
diversity of the generated scenes, we introduce a new vari-
able called Anomaly Rate; higher values will cause more
artifacts to appear in the scene such as more street lights

being off at night, more being on at daytime, and some
trash bags being on roads.

Dynamic Elements Once the static part of the scene is
completed, the dynamic part of the scene is initiated. Ini-
tially, the characters generator retrieves the locations of
buildings and benches, and instantiates characters based on
the required characters density. The Microsoft Rocketbox
Avatar Library [3] is used to define the character avatar, and
the animations are selected based on character pose (stand-
ing or sitting). Character animations were adopted from
Mixamo. In a similar way, the cars are created. However,
number of cars and models are selected at random. Addi-
tionally, car shader attributes: Smoothness, Metallic, and
BaseColour are all randomized at run-time to give differ-
ent visual appearance even to the same car model. After
that, the plates of the cars are selected at random from a
large set collected manually from the web. The main pro-
cesses are summarized in Figure 1. In parallel to that, the
first-person videos are recorded using Cinemachine camera
behaviour from Unity, attached to an AI navigation agent.
We use Cinemachine since it gives unlimited sets of be-
haviours that enrich the diversity of the generated synthetic
data in terms of the camera view angle and transition.

2. More Details on VSAC105Real Dataset
The available video stabilization benchmarks such

as DeepStab [9], Stabfr [12], Selfie Video [10], and
LiuSigg2013 [5] exclusively contain videos under normal
weather condition and at a sufficient illumination. To as-
sess the performance of the state-of-the-art video stabiliza-
tion methods under foggy, rainy, snowy, and night-time
conditions, we created the VSAC105Real dataset.

Our dataset is composed of videos collected from
YouTube using search queries like “Fog”, “Rain”, “Snow”,
“Night”, “Adverse”, and “Severe”. We manually in-
spected all the videos and selected the ones with shak-

1

https://github.com/A-Kerim/SyntheticData4VideoStabilization_WACV_2024
https://github.com/A-Kerim/SyntheticData4VideoStabilization_WACV_2024


Parameters Anomalize

Characters
Instantiation

Accessories
Attachment

Materialization Randomization

Plates
Addition

Cars
Instantiation

3D Models
Instantiation

(Sunglasses, Caps, Watches)
(Age, Skin Color,

Action, Speed)

(Model, Shader)

(Model, Location,
 Frequencey, Shader)

Materialization Randomization

Materialization Randomization

Static Elements

Figure 1. Flowchart describing the scene creation in our novel simulator.

Table 1. Dataset statistics. Comparison among the available
video stabilization datasets and VSAC105Real dataset.

Dataset Name #Videos
Average
#Frames

Total
#Frames

DeepStab [9] 61 714 43,585
Stabfr [12] 45 471 21,200
Selfie Video [10] 33 251 8,308
LiuSigg2013 [5] 144 578 83,257

VSAC105Real 105 737 77,477

ing camera movement. Then, we cut the videos to en-
sure continuous temporal criteria and the query attribute.
VSAC105Real dataset comprises 105 videos spanning nor-
mal, rainy, foggy, snowy, and night-time attributes. The
first four attributes were selected to study the effect of
severe weather conditions on video stabilization quality.
Similarly, the night-time was chosen to understand the ef-
fect of low illumination on video stabilization. Table 1
shows a comparison among different video stabilization
datasets and VSAC105Real dataset. The VSAC105Real
dataset has the advantage in terms of the average number
of frames. Moreover, it includes a diverse set of challeng-
ing attributes where videos are evenly distributed across the
classes, i.e., 21 videos per class.

3. Results

3.1. More on the Evaluation Metrics

To evaluate our approach, we use three metrics com-
monly used to evaluate video stabilization algorithms [2,

6, 9, 11]: i) Stability Score. It assesses the smoothness of
the stabilized video; the higher the value the better. It is
computed as the average between Stability Average Trans-
lation and Stability Average Rotation Scores. To compute
this score, we estimate the homography matrix between
vi and vi+1 to obtain the translation and rotation arrays.
Following this, we calculate their Fast Fourier Transform
(FFT). Finally, we obtain the score by calculating the ra-
tio between the 2nd through 6th frequency components and
all frequency components. Note that the 0th frequency
component is neglected; ii) Distortion Score. It measures
the global distortion caused by a given video stabilization
method. It fits a homography matrix between the original
and stabilized videos. Then, it finds the anisotropic scaling
among these frames; the closer to 1, the better;
iii) Cropping Ratio. It describes the ratio of the remaining
frame’s area after stabilization to the original one; iv) Suc-
cess Rate. We also measure the success rate, which com-
putes the ratio of videos that were successfully processed
and yielded a distortion score lower than or equal to one.

Table 2 shows the results of comparing our method to
several video stabilization approaches. As can be seen, our
method presented the best values on average in comparison
to all the baselines in terms of stability average, distortion,
cropping ratio, and success rate. Even though our method
did not surpass the baselines at each class individually, it
still achieved competitive results. Every baseline performs
badly in at least one class, while our method is more robust
across classes, hence holding the final best results on the
VSAC105Real.

Preserving the content while compensating for camera
shakiness is another important feature of our algorithm.
Our method achieved the best results as compared to other



Table 2. Comparison across different weather conditions in the VSAC105Real dataset. Our method presents the best average values
in comparison to the other competitors for all metrics. Bold indicates the best and underline second best.

Metric Method
Weather Condition

AverageFog Night Normal Rain Snow
St

ab
ili

ty
A

vg
.S

co
re

↑ FuSta [6] 0.226 0.683 0.715 0.679 0.824 0.626 ±0.231
Grundmann et al. [4] 0.642 0.549 0.620 0.580 0.809 0.640 ±0.101
StabNet [9] 0.201 0.469 0.620 0.577 0.753 0.524 ±0.207
DIFRINT [2] 0.121 0.212 0.321 0.247 0.446 0.270 ±0.122
Yu et al. [11] 0.401 0.682 0.665 0.572 0.834 0.631 ±0.159
Ours 0.606 0.619 0.728 0.687 0.835 0.695 ±0.093

D
is

to
rt

io
n

Sc
or

e
∗

FuSta [6] 0.202 0.692 0.725 0.712 0.798 0.626 ±0.240
Grundmann et al. [4] 0.740 0.617 0.762 0.667 0.952 0.748 ±0.128
StabNet [9] 0.111 0.518 0.790 0.597 0.710 0.545 ±0.264
DIFRINT [2] 0.367 0.219 0.351 0.270 0.476 0.337 ±0.099
Yu et al. [11] 0.372 0.729 0.654 0.593 0.804 0.631 ±0.165
Ours 0.719 0.746 0.952 0.809 0.997 0.845 ±0.124

C
ro

pp
in

g
R

at
io

↑

FuSta [6] 0.286 0.810 0.905 0.800 0.950 0.751 ±0.267
Grundmann et al. [4] 0.759 0.618 0.760 0.663 0.948 0.750 ±0.127
StabNet [9] 0.278 0.579 0.875 0.667 0.850 0.650 ±0.242
DIFRINT [2] 0.399 0.234 0.392 0.280 0.490 0.359 ±0.102
Yu et al. [11] 0.476 0.810 0.842 0.650 0.947 0.745 ±0.184
Ours 0.762 0.760 0.945 0.820 0.999 0.857 ±0.109

Su
cc

es
s

R
at

e
↑

FuSta [6] 0.280 0.816 0.905 0.762 0.905 0.734 ±0.261
Grundmann et al. [4] 0.762 0.619 0.762 0.667 0.952 0.752 ±0.128
StabNet [9] 0.238 0.524 0.667 0.571 0.810 0.562 ±0.212
DIFRINT [2] 0.429 0.238 0.381 0.286 0.476 0.362 ±0.099
Yu et al. [11] 0.480 0.815 0.762 0.619 0.857 0.707 ±0.155
Ours 0.765 0.762 0.950 0.814 1.000 0.858 ±0.110

↑Higher is better ∗Better closer to 1

state-of-the-art methods. The superiority of our method
can be linked to the accurate affine transformation matrix
estimation and the smoothing stage. Moreover, our method
achieved the highest success rate compared to the competi-
tors as shown in Table 2. It is worth noting that all base-
lines failed to stabilize most of the shaky videos at foggy
weather conditions. The reason for this outcome is that par-
ticipating media, like fog, work as a low pass filter that re-
moves high-quality features that most videos stabilization
algorithms depend on to estimate the camera trajectory. We
highlight that even though our model was not trained on
any samples under the foggy weather condition, it was ca-
pable of learning useful features from both raw images and
optical flow.

3.2. Computational Time Analysis

Our proposed method requires two image frames sam-
pled closely enough to accurately estimate the camera
trajectory T̂ given a shaky video V = {v1, v2, . . . , vN}.

Thus, to evaluate our proposed video stabilization’s per-
formance and computation cost under a low frame rate, we
performed the following set of experiments. We analysed
the performance of our model under three frame rates:
High-frame rate: This is the original setup of our video sta-
bilizer. We assume the videos are captured at 24 to 30 fps.
Under this setup, we sample every 2 consecutive frames
i.e., vi and vi+1 where i = 1, 2, 3, . . . , N − 1, and then
we generate the optical flow. Then, we estimate the affine
transformation and smooth the predicted camera trajectory
T̂ as explained in the main manuscript.
Mid-frame rate: For every 4 frames from the shaky video
V , we skip three frames i.e., we sample vi and vi+4 where
i = 1, 5, 9, 13, . . . , N − 4. Then, we calculate the optical
flow for the frames vi and vi+4. After that, we estimate
the affine transformation and smooth the predicted camera
trajectory.
Low-frame rate: Similarly, we skip 7 frames for every 8
frames from the shaky video. We sample vi and vi+8 where



Table 3. Computational Time Analysis: Higher sampling rate gives more stable videos but requires more computations.

2 consecutive frames 1 at every 4 frames 1 at every 8 frames

Stability Avg. Score ↑ 0.695 0.505 0.420
Distortion Score ∗ 0.845 0.784 0.640
Avg. Time per Frame (Sec) ↓ 0.022 0.010 0.007

↑Higher is better ↓Lower is better ∗Better closer to 1

i = 1, 9, 17, 25, . . . , N−1. Then, we repeat the steps men-
tioned earlier.

Table 3 shows the results on VSAC105Real dataset. As
expected, performing video stabilization at lower frame
rates requires fewer computations. The computation com-
plexity comes from two main factors: optical flow and
affine transformation estimations. For a video of 10 frames,
9, 2, and 1 estimation(s) are required for optical flow and
affine transformation for high, mid, and low frame rates,
respectively.

While the computation cost is reduced with lower
frames, the quality of the stabilized videos degrades.
Lower frame rates make the camera path estimation nois-
ier and, thus, the final stabilized video shakier and more
distorted. It should be noted that for the main problem ad-
dressed in this work, 24 to 30 fps is the standard frame rate.
Considering different frame rates may not be suitable given
the dynamics of the scene.

4. Discussion

Our results demonstrate the advantages of using syn-
thetic data with a specially designed ground truth and ar-
chitecture. We argue that the main factors behind achiev-
ing good results using only a small amount of synthetic
data are:

1. Accurate ground truth: Most supervised computer vi-
sion algorithms are trained using data collected and
annotated manually for this task. However, video sta-
bilization is more challenging as collecting ideal train-
ing data is not feasible. Some approaches utilize two
cameras using a mechanical stabilizer to generate the
required ground truth. The main issue is that the scene
is captured by two different cameras and from two
different view angles. Thus, the task of video stabi-
lization becomes harder for the model to learn. Our
novel approach for ground-truth generation achieves
accurate ground truth. Thus, it helps learning video
stabilization to converge. Please note that corrupt and
noisy labels are well-known issues in computer vi-
sion [1, 7, 8].

2. High-quality images and plausible scene composi-
tion: Our synthetic data is composed of high-quality

images, where the scenes comprise plausible configu-
rations. These two properties mitigate the domain gap
between the synthetic and real domains. Thus, our
model generalizes well on real videos.

3. Diversity: The key reason behind achieving good re-
sults using small size synthetic dataset can also be due
to the diversity of the generated videos. Our simula-
tor applies various domain randomization techniques,
so the attributes of the generated scenes are highly di-
verse.

4. Our video stabilization algorithm: Another key factor
is using two separate networks and leveraging optical
flow information to help with the video stabilization
task.

References
[1] Pengfei Chen, Ben Ben Liao, Guangyong Chen, and

Shengyu Zhang. Understanding and utilizing deep neural
networks trained with noisy labels. In International Con-
ference on Machine Learning, pages 1062–1070. PMLR,
2019.

[2] Jinsoo Choi and In So Kweon. Deep iterative frame interpo-
lation for full-frame video stabilization. ACM Transactions
on Graphics (TOG), 39(1):1–9, 2020.

[3] Mar Gonzalez-Franco, Ofek, et al. The Rocketbox Library
and the Utility of Freely Available Rigged Avatars. Fron-
tiers in virtual reality, 1(article 561558), 2020.

[4] Matthias Grundmann, Vivek Kwatra, and Irfan Essa. Auto-
directed video stabilization with robust l1 optimal camera
paths. In CVPR 2011, pages 225–232. IEEE, 2011.

[5] Shuaicheng Liu, Lu Yuan, Ping Tan, and Jian Sun. Bundled
camera paths for video stabilization. ACM Transactions on
Graphics (TOG), 32(4):1–10, 2013.

[6] Yu-Lun Liu, Wei-Sheng Lai, Ming-Hsuan Yang, Yung-Yu
Chuang, and Jia-Bin Huang. Hybrid neural fusion for full-
frame video stabilization. arXiv preprint arXiv:2102.06205,
2021.

[7] Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin,
and Jae-Gil Lee. Learning from noisy labels with deep neu-
ral networks: A survey. IEEE Transactions on Neural Net-
works and Learning Systems, 2022.

[8] Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber,
Jessie Barry, Panos Ipeirotis, Pietro Perona, and Serge Be-
longie. Building a bird recognition app and large scale
dataset with citizen scientists: The fine print in fine-grained



dataset collection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 595–
604, 2015.

[9] Miao Wang, Guo-Ye Yang, Jin-Kun Lin, Song-Hai Zhang,
Ariel Shamir, Shao-Ping Lu, and Shi-Min Hu. Deep on-
line video stabilization with multi-grid warping transfor-
mation learning. IEEE Transactions on Image Processing,
28(5):2283–2292, 2018.

[10] Jiyang Yu and Ravi Ramamoorthi. Selfie video stabilization.
In Proceedings of the European Conference on Computer
Vision (ECCV), pages 551–566, 2018.

[11] Jiyang Yu and Ravi Ramamoorthi. Learning video stabi-
lization using optical flow. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 8159–8167, 2020.

[12] Lei Zhang, Qing-Zhuo Zheng, Hong-Kang Liu, and Hua
Huang. Full-reference stability assessment of digital video
stabilization based on riemannian metric. IEEE Transac-
tions on Image Processing, 27(12):6051–6063, 2018.


	. Our Framework for Generating Synthetic Data for Computer Vision Tasks 
	. More Details on VSAC105Real Dataset
	. Results
	. More on the Evaluation Metrics
	. Computational Time Analysis

	. Discussion

