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Abstract

Robust visual tracking plays a vital role in many areas such as autonomous
cars, surveillance and robotics. Recent trackers were shown to achieve ade-
quate results under normal tracking scenarios with clear weather conditions,
standard camera setups and lighting conditions. Yet, the performance of
these trackers, whether they are correlation filter-based or learning-based,
degrade under adverse weather conditions. The lack of videos with such
weather conditions, in the available visual object tracking datasets, is the
prime issue behind the low performance of the learning-based tracking algo-
rithms. In this work, we provide a new person tracking dataset of real-world
sequences (PTAW172Real) captured under foggy, rainy and snowy weather
conditions to assess the performance of the current trackers. We also intro-
duce a novel person tracking dataset of synthetic sequences (PTAW217Synth)
procedurally generated by our NOVA framework spanning the same weather
conditions in varying severity to mitigate the problem of data scarcity. Our
experimental results demonstrate that the performances of the state-of-the-
art deep trackers under adverse weather conditions can be boosted when the
available real training sequences are complemented with our synthetically
generated dataset during training.
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1. Introduction

Recently, convolutional neural networks (CNN) have shown a remark-
able progress in various computer vision tasks such as object detection [1],
object tracking [2], semantic segmentation [3], depth estimation [4], optical
flow estimation [5], and person re-identification (ReID) [6]. Compared to the
traditional shallow approaches, CNN-based models exhibit better generaliza-
tion ability and perform much more accurately. Moreover, their performance
usually increases as their expressive power increases, i.e. having more layers
and/or more parameters. Yet, this introduces another difficulty as training
such big networks requires more data and more powerful computing devices.
The introduction of cheap general purpose graphics processing units (GPG-
PUs) have alleviated the hardware limitations. However, the scarcity of
large-scale datasets for training supervised learning methods still remains as
the main bottleneck for many computer vision tasks, especially, the ones that
require enormous efforts for annotation, such as semantic segmentation and
visual object tracking. Besides, for some others, e.g. optical flow and depth
estimation, it becomes virtually impossible to provide large-scale densely an-
notated datasets.

In addition to the aforementioned need for large-scale benchmark datasets,
another requirement is to have a high level of diversity to allow deep learn-
ing models to perform well in the wild and not to overfit to training data.
On the other hand, obtaining large-scale diverse data in a real-world setting,
especially under rare circumstances, is not a simple task. As a consequence,
small scale and mostly normal attributes tend to be the common features of
the available datasets. Unfortunately, training computer vision models under
normal scenarios, such as clear sky, optimal lighting, and standard recording
conditions, causes unexpected behaviour or complete failure in much chal-
lenging adverse conditions.

In this work, we focus on person tracking under adverse snowy, rainy
and foggy weather conditions. The general problem of visual object tracking
(VOT) is one of the major tasks in computer vision field that is essential for
solving other higher-level tasks such as pedestrian detection, action recog-
nition, or trajectory estimation. Therefore, it is vital for many real-world
systems such as self-driving vehicles, automated retail or visual surveillance.
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Failure of such systems under adverse conditions can lead to property dam-
ages or human injuries. Thereby, to assess the performance of the state-
of-the-art trackers in person tracking in video feeds taken under such cir-
cumstances, we collect a novel real dataset, PTAW172Real, that consists of
172 videos featuring weather with heavy snow, rain or fog. Our experiments
expose the poor performance of the state-of-the-art trackers when tested on
PTAW172Real and this can be linked to the limited number of videos taken
under adverse weather conditions in the current VOT datasets that these
trackers were trained with. We offer a remedy for the lack of data availability
by using our NOVA engine to generate a synthetic dataset, PTAW217Synth,
that provides diverse and rich training sequences featuring adverse weather
conditions. We show that using synthetic data, we can bridge the aforemen-
tioned gap and improve the performance of the learning-based trackers in
such conditions. To the best of our knowledge, no work has been done to
validate the usability of synthetic data for this purpose.

Our main contributions in this paper can be summarized as follows:

• We present a novel real dataset called PTAW172Real for visual object
tracking under adverse weather conditions. The dataset contains 172
videos manually annotated covering snowy, rainy and foggy weather
conditions.

• We highlight the poor performance of the state-of-the-art trackers un-
der adverse weather conditions with PTAW172Real.

• Using our NOVA rendering engine, we procedurally generate a new
dataset called PTAW217Synth made up of synthetic sequences under
adverse weather conditions complete with automatically-generated per-
frame annotations including bounding boxes at pixel-level accuracy,
occlusion state and other relevant metadata such as time-of-day and
camera type. The dataset consists of 217 sequences for person tracking
spanning the three adverse weather conditions.

• We show that fine-tuning the pre-trained models on our synthetic dataset
PTAW217Synth is able to improve the performance of the deep track-
ers. Similarly, we also show that training from scratch on only our
synthetic training dataset can achieve comparable results to training
on large-scale real datasets.
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2. Related Work

Despite the relatively short history of deploying synthetically generated
data in the field of computer vision, a number of studies have explored the
usability of synthetic data for different computer vision tasks. Synthetic
data in these studies are utilized for both training and testing purposes.
Specifically, for training, it can be used as the sole training data or toward
augmenting the actual data in pre-training or fine-tuning of learning models.

Alhaija et al. [7] investigated the use of synthetic data for instance seg-
mentation and object detection. They concluded that training on both syn-
thetic and real data achieves better results as compared to training on a
small set of real data. At the same time, they showed that fine-tuning on
their augmented data can achieve even better results. Similarly, Cheung et
al. [8] proved that synthetic data can be used together with real data to
boost accuracy for crowded scene understanding. They showed that using
their generated synthetic dataset, LCrowdV, with real datasets can improve
the accuracy as compared to using these real datasets alone.

Varol et al. [9] demonstrated the usability of synthetic data for human
depth estimation and part segmentation. Their results exhibit that training
on synthetic and real images can increase the accuracy for semantic segmen-
tation and reduce the root-mean-squared-error for depth estimation. In the
same way, Barbosa et al. [10] extensively studied the advantages of using their
generated synthetic dataset, SOMAset, for the task of person ReID. They
showed that performing pre-training on their synthetic dataset and then fine-
tuning on real datasets achieve better results as compared to training only
on real datasets.

Under the scope of VOT, Gaidon et al. [11] provided a detailed analysis on
the advantages of using synthetic data for the task of multi-object tracking.
Training on their synthetic dataset then fine-tuning on real datasets was
shown to achieve the best results as compared to only training on synthetic
or real datasets. In the same vein, Zhang et al. [12] used image-to-image
translation method to generate synthetic thermal infrared tracking videos
using the RGB ones. Their study illustrated that training on their synthetic
videos then fine-tuning on real ones or training on both synthetic and real
videos achieve better results as compared to training on the available small
scale real datasets.

In line with the previous studies, we also investigate the advantages of
using synthetic data for training learning-based visual tracking models. How-
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Figure 1: On the left half, sample frames from the currently-available real (top-left quarter)
[13, 14, 15, 16] and synthetic (bottom-left quarter) [17, 18, 19, 11] visual object tracking
datasets demonstrate the lack of adverse weather conditions. The right half presents
sample frames from sequences spanning raining, foggy and snowy weather conditions from
PTAW172Real (top-right quarter) and PTAW217Synth (bottom-right quarter) datasets
that we introduce in this work.

ever, this work sheds light on the limitations of the existing real and synthetic
visual object tracking datasets. As shown in Fig. 1, the adverse weather
conditions seem to be underrepresented in most of the available real and
synthetic VOT datasets. This causes the state-of-the-art trackers perform
poorly under these challenging weather conditions. Bearing this in mind, we
present synthetic data as a legitimate solution for the lack of adverse weather
conditions in the real datasets. To this end, we utilize our procedural con-
tent generation engine NOVA to produce a visual object tracking dataset for
training of general purpose visual object trackers. The generated dataset is
specifically designed for tracking people under adverse weather conditions in
outdoor environments.

3. Extensions to NOVA Framework

To procedurally generate synthetic sequences of pedestrians under ad-
verse weather conditions, we use the NOVA rendering engine [20], which is
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designed with the goal of allowing researchers with no experience in com-
puter graphics to generate high quality datasets with accurate and dense
annotations. NOVA operates in two modes. The first is to generate a single
sequence while the other is to output a full dataset. The first mode gives
the user full control of the sequence to be generated where it is possible to
specify the environment, the weather condition, time of day, camera type,
number of cars and number of pedestrians and their density. The dataset
mode requires nothing to be specified except the number of sequences to be
generated so that NOVA varies the other parameters automatically.

For the particular task of person tracking this work deals with, NOVA
generates, for each frame, a bounding box specifying the exact location of
the person(s) being tracked in the frame and the occlusion state, that is,
whether any other object or person in the scene occludes the person(s) being
tracked at that instant. In addition to these, a supplementary metadata is
provided with each sequence denoting the environment, weather condition,
time of day, camera type, number of people and cars, and people density.

One of the major highlights of NOVA is its capacity to procedurally gen-
erate highly diverse and photorealistic sets of synthetic humans. So much
so that, each generated human is essentially unique in appearance due to
the practically infinite number of recipes (combinations of parameters that
are put together randomly on the fly but in cohesion with each other) that
NOVA uses in creating them. In this work, we further develop this aspect of
NOVA by incorporating premade synthetic humans from Microsoft Rocket-
box Avatar Library [21].

Since the main aim of this work is to enhance the performance of visual
object trackers under adverse weather conditions, we also extended other
capabilities of NOVA toward photorealistic simulation of the generated hu-
mans under adverse weather conditions. The environment is built to change
dynamically to match the corresponding weather condition and time of the
day. For instance, the textures of buildings are changed to have lit windows
at nighttime. Furthermore, we implemented the following to facilitate the
generation of synthetic sequences with similar visual characteristics to those
of the real-world videos captured under adverse weather conditions.

Snowy Weather Condition. First, the variety of clothing used to gener-
ate pedestrians in snowy weather is restricted only to outdoor cold-weather
clothes. At the same time, the pedestrians are randomly assigned umbrellas,
such that, an umbrella is attached to the right or left hand of a pedestrian
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at random and the animation of the pedestrian is set to match the umbrella
mode, i.e., open or close. Snow tracks left by cars and pedestrians are sim-
ulated. Furthermore, snow banks and melt snow are created on pavements
and roads to give a higher degree of realism. For this, a set of street light
poles in the scene are selected at random to determine the positions to place
snow banks. Then, from a predefined set of snow banks, one snow bank is
instantiated for each position. After that, snow materials are assigned at ran-
dom to the instantiated snow banks. Following this, the scale and rotation of
the snow bank models are randomized to allow for even more diversity. On
the other hand, melt snow is simulated by the same snow shader that is used
to simulate accumulated snow but with the accumulation parameter set to
a random number smaller than the one used for accumulated snow. Making
use of the particle system and post-processing effects, falling snow particles
and blizzard were randomly introduced to the simulation, as well.

Rainy Weather Condition. Similar to the snowy weather, pedestrians
in rainy weather are also generated with outdoor cold-weather clothes; and
umbrellas are given to some of them in the same way. In addition, water
puddles are simulated to account for water accumulation due to the rain.
This is realized by using a puddle shader that is assigned to some of the
ground materials (pavements, roads etc.) randomly. For the heavy rain,
the rain splash is activated and additional water puddles are instantiated
from a set of water puddles. Rain drops are generated using the particle
system. Furthermore, rain drops falling on the camera lens are simulated
using post-processing effects to match the characteristic of the rainy videos
in real life.

Foggy Weather Condition. The clothes of pedestrians produced in foggy
weather are not limited to a specific category, but are selected randomly
instead. Additionally, fog is simulated using post-processing effects and the
Enviro system [22]. Fog density is randomized at run time to give more
diversity.

Motion Blur and Chromatic Aberration. These camera effects were
simulated additionally to match the image degradations observed in real-
life adverse weather videos. Using post-processing, NOVA simulates these
two effects procedurally and parametrically. Thus, how severe the effect of
these two degradations is randomly configured at run time to provide further
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Figure 2: Chromatic aberration, motion blur and both effects are demonstrated in the
first, second and third rows, respectively. The first column shows the original frame while
the second displays the result of applying the effect(s).

diversity in the generated synthetic sequences. The impact of using these
effects over the generated sequences is demonstrated in Fig. 2.

4. PTAW172Real and PTAW217Synth Datasets

4.1. Real-World Data Collection for PTAW172Real

In order to analyze the performance of the recent general purpose visual
trackers under adverse weather conditions, we collected real-world videos
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Table 1: Dataset statistics of PTAW172Real.

Class
Min

Frames
Max

Frames
Mean

Frames
Total

Frames
Videos

Rain 108 1755 498 31888 64

Snow 113 960 394 24010 61

Fog 106 750 328 15394 47

All 106 1755 407 71292 172

from YouTube spanning snowy, rainy and foggy weather. Keywords such
as “adverse”, “extreme”, “heavy”, and “severe” were used together with the
weather names to initiate searches on Youtube. Following this, the query
results were manually checked and only the videos satisfying the adverse
weather conditions were selected for the annotation. The acquired videos
were edited to assure that the person of interest is not occluded and clearly
visible in the initial frame. At the same time, the lengths of the videos were
modified as needed to keep them around 400 frames per video to provide
compatibility with the sequences in the available VOT datasets. Statistics
showing the minimum, maximum, average and total number of frames are
given in Table 1. The number of videos in the dataset is 172 and the total
number of frames is over 71 thousand. The collected videos are at 24 frames
per second (FPS) and average time period per sequence is around 17 seconds.
Sample frames from the collected PTAW172Real dataset are shown in Fig. 3.

We used the VGG Image Annotator tool [23, 24] for annotating the
dataset. We annotated every 5th frame by drawing a bounding box around
the person of interest. The tightest box was drawn, excluding the accessories
such as handbags, purses, or umbrellas carried by the person. When the per-
son was partially or fully occluded, the estimated location of the person was
considered. Additionally, each video was associated with four attributes re-
garding object occlusion, scale change, background clutter and abrupt cam-
era motion. Fig. 4 gives the hierarchical distribution of the attributes in
PTAW172Real dataset.

4.2. Synthetic Data Generation for PTAW217Synth

The PTAW217Synth dataset employed to train the deep learning track-
ers consists of 217 synthetic sequences that were generated using the NOVA
rendering engine. NOVA allows to specify the attributes of the sequences
to be generated. In this work, we configured these attributes to match our
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Figure 3: PTAW172Real, our real-world training dataset for person tracking under ad-
verse weather conditions, consists of 172 sequences. Each row shows a specific adverse
weather condition, namely, rain, fog, and snow.

Figure 4: The sunburst chart shows the distribution of different attributes across the
PTAW172Real dataset. The innermost circle gives the weather conditions, and the outer
circles give occlusion (FO: Full Occlusion, PO: Partial Occlusion), scale change (LSC:
Large Scale Change, SSC: Small Scale Change), background clutter (BC: Background
Clutter, NBC: No Background Clutter) and abrupt camera motion (ACM: Abrupt Camera
Motion, NACM: No Abrupt Camera Motion), respectively.

goal of generating diverse synthetic sequences under adverse weather condi-
tions. Accordingly, the weather conditions were limited to snowy, rainy and
foggy weather. The virtual camera type to capture the simulations was set
as either the street-level camera or the surveillance camera. The simulation
environment was limited to the streets of an urban center, for the reason that
such are the most common settings observed in the real-world VOT datasets.
In parallel to this, all other attributes, such as time-of-day and crowdedness,
were randomized to ensure the diversity of the generated sequences. The
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Figure 5: Hierarchical view of the attributes across the PTAW217Synth dataset generated
by NOVA.

Figure 6: PTAW217Synth, our synthetically generated training dataset for person tracking
under adverse weather conditions, consists of 217 sequences, each with a unique set of
attributes. Each row shows a specific adverse weather condition, namely, rain, fog, and
snow. Sample frames are shown here, illustrating the variations in crowdedness, camera
altitude, weather conditions and times of day.

attributes of the generated synthetic sequences are given in Fig. 5. Conse-
quently, the diversity of the generated sequences can be noted in the sample
images from these sequences in Fig. 6.

Additional information regarding the minimum, maximum, average and
total number of frames are shown in Table 2. The overall average number of
frames per sequence is 500 which gives 21-seconds video sequences generated
at 24 FPS. The total number of frames of the 217 sequences within the
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Table 2: Dataset statistics of PTAW217Synth.

Class
Min

Frames
Max

Frames
Mean

Frames
Total

Frames
Videos

Rain 490 510 501 34538 69

Snow 490 510 501 37577 75

Fog 490 510 499 36432 73

All 490 510 500 108547 217

Figure 7: The figure demonstrates the weather variations simulated in PTAW217Synth.
The first and second rows present different view points of the same location. Each group
of 2x2 images displays a weather condition (from left to right: rainy, foggy, and snowy) in
increasing adversity while the large leftmost image in the row shows the same location in
clear weather.

dataset is more than 108 thousand. We should note that PTAW217Synth
has a balanced distribution of sequences across the rainy, snowy and foggy
weather conditions. The sample images captured at a single location from two
different view points given in Fig. 7 demonstrate the variety of the simulated
weather conditions.

A visual comparison between PTAW172Real and PTAW217Synth datasets
is given in Fig. 8. In each row a specific weather condition is presented.
Both datasets exhibit similar visual characteristics for the three weather
conditions. The figure also demonstrates the level of photorealism of the
PTAW217Synth dataset.
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Figure 8: A visual comparison among the synthetic PTAW217Synth (to the right) and real
PTAW172Real (to the left) datasets. Each row demonstrates a specific weather condition
(from top to bottom: rainy, foggy, and snowy).

5. Experiments

In this section, we study the performance of the state-of-the-art visual
trackers in adverse weather conditions in the first set of experiments. The
poor performance is highlighted and discussed. In the second set of ex-
periments, we show how the performance of the deep-learning based visual
trackers can be enhanced by training on our generated synthetic sequences.
First, the evaluation measures are discussed in Section 5.1. Then, the utilized
trackers are described in Section 5.2 and the training protocol is explained
in Section 5.3. Finally, the results are analysed and explored in Section 5.4.

5.1. Evaluation Measures

The two widely used metrics precision and success (IoU) are employed
for evaluating the performance of the visual trackers analyzed in this work.
Precision calculates the distance between the centers of the tracker bounding
box and the ground truth bounding box and then checks whether this center
error is within the specified limits. We employ the conventional threshold of
20 pixels and consider the tracking as accurate for a frame if the center error
is smaller than this value. We then extract the percentage of the accurately
predicted bounding boxes for each sequence in our dataset. On the other
hand, success measures the intersection over union (IoU) of the tracker and
ground truth bounding boxes. We consider a tracking result as successful if
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the IoU is larger than the common threshold of 0.50, and report the percent-
age of the successfully predicted bounding boxes averaged over the sequences
in our dataset.

5.2. Trackers

In order to properly address the performance of the state-of-the-art gen-
eral purpose trackers under adverse weather conditions, two different sets of
trackers were selected. The sets present the two main approaches in visual
object tracking, i.e. correlation filter -based and learning-based tracking.

Five state-of-the-art correlation filter -based trackers were chosen for the
experiments. These are ECO [25], BACF [26], and context aware (CA) [27]
versions of DCF [28], SAMF [29] and STAPLE [30]. DCF, dual correlation
filter, utilizes a kernelized correlation filter that has a similar complexity to
its linear counterpart, which improves tracker speed (FPS) considerably. On
the other hand, SAMF, scale adaptive with multiple features, uses a scale
adaptive template size instead of using a fixed one for the correlation filter
kernel which is stated to make the tracker more robust. STAPLE, sum of
template and pixel-wise learners, fuses template and histogram scores to bet-
ter handle shape deformation, which facilitates tracking deformable objects
more accurately. ECO uses a modified version of DCF to improve memory
usage, tracking speed, and robustness. BACF employs a background-aware
correlation filter that utilizes specific manually extracted features that ac-
count for both background and object of interest change over time. The
context aware versions of DCF [28], SAMF [29] and STAPLE [30] that we
used improve the original implementations by utilizing the global context
information into the standard correlation filter tracking algorithms.

Similarly, for investigating the benefits of training on our generated syn-
thetic sequences, four state-of-the-art learning-based deep trackers were used.
These are DiMP [31], ATOM [32], PrDiMP [33], and KYS [34]. DiMP is an
offline learning based tracker that can be trained in an end-to-end manner. It
applies both background and target information in the process of predicting
the object of interest location. The tracker is based on the Siamese tracking
architecture. It learns the discriminative loss function during the training
phase. ATOM, however, is trained both offline and online. Its tracking algo-
rithm deploys target estimation and classification that are learnt offline and
online, respectively. At run-time, the classification component predicts the
IoU between the target object and the estimated bounding box. PrDiMP is
based on the DiMP architecture. However, unlike DiMP, PrDiMP applies
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probabilistic regression concept and predicts the probability density of the
target given the input frame. This tracker is trained by minimizing KL-
divergence in offline manner. KYS tracker uses the visual scene information
to better enhance the target localization and tracking. It encodes this infor-
mation using localized state vectors and propagates it through the sequence
to achieve better knowledge of the scene toward realizing better performance
during testing. KYS is trained offline to learn how to propagate the scene
information.

5.3. Training Protocol

We perform two training scenarios to assess the benefits of the generated
synthetic sequences when used for training visual object trackers. For both
experiments, the training was done using the whole PTAW217Synth dataset
of 217 synthetic sequences. Then, the validation and testing were performed
on the whole PTAW172Real dataset. For validation, 33 videos spanning the
rainy, foggy and snowy weather conditions were selected at random. The
remaining 139 videos were applied for testing.

Training from Scratch. In the first scenario, the models of the four learning-
based trackers are trained from scratch using only the generated synthetic
sequences. Then, the best model on the validation set is engaged on the test
set. Both validation and test sets contain real sequences. The mean and the
standard deviation of the tracker performances are reported over 5 iterations
to account for the stochastic nature of these trackers.

Fine-Tuning. In the second scenario, the pre-trained versions provided by
the authors of the four trackers are fine-tuned on our synthetic sequences.
Later, the performances of these models were evaluated on real test sequences
as done in the previous scenario.

5.4. Results

The performances in terms of precision and success score are shown in
Tables 3 and 4 for the studied trackers on the test partition of PTAW172Real,
namely 163 videos. These results show that the trackers from both tracking
mainstreams, correlation filter based and learning based, performed poorly
under adverse weather conditions. This observation confirms that adverse
weather conditions pose certain challenges for the state-of-the-art tracking
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Table 3: Precision results of the studied state-of-the-art trackers on the test partition of
PTAW172Real, our dataset of real-world outdoor videos taken in adverse weather condi-
tions.
Class ECO BACF STAPLE CA SAMF CA DCF CA ATOM DiMP PrDiMP KYS
Rain 0.59 0.50 0.46 0.38 0.22 0.61+/-0.01 0.60+/-0.01 0.61+/-0.01 0.63+/-0.02
Snow 0.56 0.53 0.49 0.46 0.35 0.60+/-0.01 0.62+/-0.01 0.59+/-0.01 0.58+/-0.01
Fog 0.67 0.65 0.59 0.42 0.37 0.73+/-0.01 0.74+/-0.01 0.74+/-0.01 0.77+/-0.02

Table 4: Success scores of the studied state-of-the-art trackers on the test partition of
PTAW172Real, our dataset of real-world outdoor videos taken in adverse weather condi-
tions.
Class ECO BACF STAPLE CA SAMF CA DCF CA ATOM DiMP PrDiMP KYS
Rain 0.64 0.56 0.47 0.45 0.20 0.66+/-0.01 0.63+/-0.01 0.64+/-0.01 0.65+/-0.02
Snow 0.56 0.55 0.49 0.43 0.28 0.59+/-0.01 0.61+/-0.01 0.59+/-0.01 0.57+/-0.01
Fog 0.70 0.69 0.59 0.42 0.27 0.73+/-0.01 0.73+/-0.01 0.73+/-0.01 0.78+/-0.02

algorithms. The correlation filter trackers perform worse than the deep track-
ers because they are mostly online learning trackers. On the other hand, the
deep trackers, which are based on offline learning algorithms, were trained
on large scale datasets, which may have contained a number of videos under
adverse weather conditions. Thus, they performed slightly better than the
ones that are based on correlation filter.

It seems that rain and snow particles, that partially occlude the object
of interest, cause a significant change on the visual characteristics handled
by the trackers. Thus, it makes it hard for the tracker to differentiate the
target object from the background. This effect is particularly clear when the
size of the object of interest is relatively small. In parallel to that, fog causes
both the background and the object of interest regions to have similar visual
appearance. Thus, it makes it hard for the tracker to distinguish the target
object from the background. Even so, foggy weather condition seems to be
slightly less challenging as compared to the others.

The results of our training experiments are shown in Fig. 9. The IoU
scores for the four trained trackers, namely DiMP, ATOM, KYS and PrDiMP,
are presented for the two training scenarios. Moreover, these results are com-
pared to the ones of their corresponding baselines. Both the mean and stan-
dard deviation were reported over five iterations to account for the stochas-
tic nature of these trackers. Training from scratch on our synthetic adverse
weather sequences achieves comparable results to the ones obtained using
the baseline for DiMP and PrDiMP. For ATOM and KYS, however, the
models trained from scratch surpassed their baselines. On the other hand,
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Figure 9: IoU results obtained with the two different training scenarios as compared to
those of the baselines. Error bars give the standard deviation of the IoU results.

fine-tuning the pre-trained models on our synthetic sequences improved the
performances of ATOM, DiMP and PrDiMP distinctly.

It is worth noting that both the tracking algorithm and the training
dataset affect how a specific tracker gains from training on our synthetic
sequences. Both determine which training scenario, from scratch or fine-
tuning, is more beneficial. For example, DiMP and PrDiMP trackers got
the most advantage from fine-tuning. On the other hand, training from
scratch was better for KYS tracker, while the performance of ATOM was
improved in both scenarios. Another point to be noticed is the conspicuous
difference in the level of improvement in trackers performance across different
weather conditions. This can be directly linked to the varying distribution
of the adverse weather conditions in the different training datasets used for
these baselines. So much so that, the lack of adverse weather conditions
videos in the training dataset stands out to be the main reason behind the
observed performance boost since using even a relatively small number of
synthetic sequences spanning these absent features helped the trackers to
outperform their baselines, given that the trackers were originally trained
on large scale datasets such as LaSOT [35], GOT10k [36], COCO [37], and
TrackingNet [38], each far exceeding PTAW217Synth in number of sequences.

It is important to note that the test set contains only real sequences.
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Thus, the domain gap problem is not a factor at play under the scope of this
analysis. In contrast, diversity of the synthetic sequences in terms of weather
conditions, times of day, lighting conditions, camera attributes and synthetic
humans altogether enhanced the training process significantly. The high level
of photorealism of these synthetic sequences also contributed to diminish the
gap between the real and synthetic domains. Thus, performing training
from scratch or fine-tuning on our synthetic sequences directly improved the
trackers performance.

A qualitative comparison among the tracking results achieved by the base-
lines and the trained models is presented in Fig. 10. It is seen that utilizing
our synthetic data for training improves the performance of the baselines
under adverse weather conditions.

Additionally, Fig. 11 displays the success scores for the four deep trackers
under full occlusion, scale change, background clutter and sudden camera
motion videos. In general, both the baselines and the trained models per-
formed the worst in sequences with background clutter while the ones with
sudden camera motion resulted in relatively higher performance. It could be
because the background clutter under adverse weather conditions causes the
trackers to experience a significant difficulty in locating the object of interest
since the background and the object of interest end up having similar visual
appearances. On the other hand, the reason that abrupt camera motion does
not seem to be effecting trackers as much as the other attributes could be
due to the fact that the other three attributes are more closely associated
with appearance of the object of interest as compared to the camera motion
which translate both the background and the object of interest similarly. A
table showing the number of sequences in each weather condition for each of
the four attributes is provided in the supplementary material.

6. Conclusion

Our work investigated the lack of adverse weather conditions in the avail-
able general purpose visual tracking datasets and highlighted the low perfor-
mance of the state-of-art trackers in person tracking under these specific cir-
cumstances. As a solution, we proposed using our NOVA rendering engine to
generate synthetic sequences that span snowy, rainy and foggy weather con-
ditions. We trained four different deep trackers, namely DiMP, ATOM, KYS
and PrDiMP, on 217 synthetic sequences generated by NOVA and tested
them on the real videos that were collected from YouTube and annotated
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Figure 10: A qualitative comparison of the trained trackers with the baselines on three
example sequences. Training on PTAW217Synth improves the trackers performance under
adverse weather conditions.

manually for that aim. Our analysis reveals that applying our synthetic
sequences for training purposes can bridge the data gap and improve the
trackers performance considerably.

A number of limitations have come to light toward the goal of using syn-
thetic sequences for model training as an alternative to the real data. Perhaps

19



0.61

0.62

0.61

0.63

0.62

0.57

0.52

0.64

0.65

0.65

0.62

0.62

0.45 0.49 0.53 0.57 0.61 0.65 0.69 0.73 0.77

ATOM

DiMP

PrDiMP

KYS

Full Occlusion [78 Videos]

Fine-tuning Scratch Baseline

0.6

0.63

0.63

0.63

0.64

0.59

0.55

0.66

0.64

0.68

0.64

0.64

0.45 0.49 0.53 0.57 0.61 0.65 0.69 0.73 0.77

ATOM

DiMP

PrDiMP

KYS

Scale Change [63 Videos]

Fine-tuning Scratch Baseline

0.6

0.58

0.56

0.6

0.6

0.55

0.51

0.63

0.64

0.63

0.6

0.58

0.45 0.49 0.53 0.57 0.61 0.65 0.69 0.73 0.77

ATOM

DiMP

PrDiMP

KYS

Background Clutter [49 Videos]

Fine-tuning Scratch Baseline

0.7

0.68

0.68

0.7

0.73

0.69

0.64

0.71

0.73

0.72

0.7

0.7

0.45 0.49 0.53 0.57 0.61 0.65 0.69 0.73 0.77

ATOM

DiMP

PrDiMP

KYS

Sudden Camera Motion [60 Videos]

Fine-tuning Scratch Baseline

Figure 11: Success scores for ATOM, DiMP, PrDiMP and KYS trackers are shown for
four different attributes. Background clutter causes the trackers to perform poorly.

the domain gap problem is the one of central concern in this scope. It arises
mainly because the training and testing processes take place in two different
domains i.e. synthetic and real domains, respectively. To address this point,
we paid great attention to the photorealism of the generated synthetic se-
quences and most specifically the simulated adverse weather conditions. The
second key issue is that synthetic sequences are usually generated at optimal
lighting and recording conditions. Thus, the lack of image artifacts such as
motion blur, chromatic aberration, noise and others in the synthetic data
may cause the models trained on it to fail once such artifacts are encoun-
tered in real sequences. To mitigate this problem, we generate our synthetic
sequences at different lighting conditions and recording setups. Additionally,
we simulate lens artifacts such as motion blur and chromatic aberration.
Another note-worthy issue is the fact that repetitive textures, objects, an-
imations, and motions frequently observed in virtual 3D worlds may cause
over-fitting. We tackled this issue by diversifying scene elements such as
pedestrians, buildings, cars, and other scene objects.

Throughout this work, we demonstrated how our generated synthetic se-
quences improved trackers performance on adverse weather conditions. How-
ever, investigating the effect of adverse weather conditions on other com-
puter vision tasks like optical flow estimation, depth estimation, and person
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re-identification are sill open questions. The boost in performance upon rem-
edying the lack of sample with adverse weather conditions for the VOT task
could be an indication of a similar problem in other computer vision tasks.
In light of this study, we believe that using our rendering engine NOVA to
generate synthetic training data can bridge the gap of data scarcity in said
tasks toward improvement in both accuracy and robustness.

The datasets PTAW172Real and PTAW217Synth that we featured in this
work are available for download at the project website https://graphics.

cs.hacettepe.edu.tr/NOVA-Adverse along with a supporting video illus-
trating the motivation behind this work, a sample of sequences from PTAW217Synth
and also a sample of the PTAW172Real sequences superimposed with track-
ing results.
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