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Abstract

Recent semantic segmentation models perform well under standard weather condi-
tions and sufficient illumination but struggle with adverse weather conditions and night-
time. Collecting and annotating training data under these conditions is expensive, time-
consuming, error-prone, and not always practical. Usually, synthetic data is used as a
feasible data source to increase the amount of training data. However, just directly us-
ing synthetic data may actually harm the model’s performance under normal weather
conditions while getting only small gains in adverse situations. Therefore, we present
a novel architecture specifically designed for using synthetic training data for domain
adaptation. We propose a simple yet powerful addition to DeepLabV3+ by using weather
and time-of-the-day supervisors trained with multi-task learning, making it both weather
and nighttime aware, which improves its mIoU accuracy by 14 percentage points on the
ACDC dataset while maintaining a score of 75% mIoU on the Cityscapes dataset. Our
code is available at https://github.com/lsmcolab/Semantic-Segmentation-under-Adverse-
Conditions.

1 Introduction
Understanding the environment using visual data has been an active research problem since
the early beginning of computer vision. It started to attract even more researchers with
the great advancement in autonomous cars [20, 38, 42], human-computer-interaction [23,
27, 29], and augmented reality [3, 7, 10]. Semantic segmentation is at the core of these

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Kumar, Klingner, Yogamani, Milz, Fingscheidt, and Mader} 2021

Citation
Citation
{Teichmann, Weber, Zoellner, Cipolla, and Urtasun} 2018

Citation
Citation
{Wiseman} 2022

Citation
Citation
{Liu, Sivaparthipan, and Shankar} 2022

Citation
Citation
{Nazar, Alam, Yafi, and Mazliham} 2021

Citation
Citation
{Ren and Bao} 2020

Citation
Citation
{Baroroh, Chu, and Wang} 2021

Citation
Citation
{Chiang, Shang, and Qiao} 2022

Citation
Citation
{Costa, Petry, and Moreira} 2022

https://github.com/lsmcolab/Semantic-Segmentation-under-Adverse-Conditions
https://github.com/lsmcolab/Semantic-Segmentation-under-Adverse-Conditions


2 KERIM ET AL.: SEMANTIC SEGMENTATION UNDER ADVERSE CONDITIONS

Clear Weather
Real Data

Adverse Weather
Real Data

1) Training

A) Popular Domain Adaptation Pipeline

2) Fine Tuning
Adverse Weather

Real Data
Model

3) Inference

1) Training

B) Our Proposed Domain Adaptation Pipeline

Clear Weather
Real Data

Adverse Weather
Synthetic Data

+

ModelWAS TAS

2) Inference

Model

Model
Adverse Weather

Real Data

Figure 1: Existing domain adaptation vs. our proposed pipeline. Unlike other ap-
proaches, our pipeline utilizes synthetic data, Weather-Aware-Supervisor (WAS), and Time-
Aware-Supervisor (TAS) to handle standard-to-adverse domain adaptation. Leveraging our
synthetic-aware training procedure, we train our weather and daytime-nighttime aware ar-
chitecture, simultaneously, on synthetic adverse weather and real normal weather data.

applications, with the data-driven supervised learning methods dominating this field, achiev-
ing state-of-the-art results [5, 14, 31, 48, 49]. Training these models on real data requires
large-scale human annotated images, which is expensive and time-consuming, especially for
images taken under challenging weather and illumination conditions such as fog and night-
time. For instance, a person takes about 90 minutes to annotate an image from the Cityscapes
dataset [9], which contains only daylight and clear weather conditions, while it exceeds three
hours for the Adverse Conditions Dataset with Correspondences (ACDC) [33] dataset.

Despite the success of recent semantic segmentation models in clear weather and stan-
dard illumination conditions, these methods struggle with adverse conditions (e.g., rainy,
foggy, snowy, and nighttime), which degrade the feature extraction process. Falling rain and
snow particles change the visual appearance of objects, partially occlude them, and cause dis-
tortion on the camera sensor, while fog works as a low-pass filter, removing high-frequency
components. Nighttime is even more problematic because of the dramatic change in the light
distribution and other severe artifacts, such as lens flare, bright spots, and chromatic aberra-
tion. Yet, few works have tried to investigate the effect of weather conditions and nighttime
in semantic segmentation [1, 17, 21, 24, 46]. Although they achieve remarkable results, they
are limited to one weather condition only and are too narrow in their scope.

In this paper, we propose a novel training procedure to address the issues in the semantic
segmentation under adverse conditions and in the annotation efforts, simultaneously. We
leverage synthetic data to produce ground-truth images at no human annotation effort and
create a new dataset, the AWSS, which is composed of images specially generated by a
modified version of the Silver [19] simulator. To reduce the gap between synthetic and real,
our approach combines synthetic and real images by alternating their batches at training
time as illustrated in Fig. 1. We also propose the Weather-Aware Supervisor (WAS) and the
Time-Aware Supervisor (TAS), which are trained jointly with the main module to improve
the feature extraction. Our main module derives from the DeepLabV3+ which contains the
powerful atrous convolutions that increase the receptive field while not increasing the dimen-
sions of feature maps and computation cost. Thus, better performance at low computation.
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Table 1: Comparison among synthetic semantic segmentation datasets. Our dataset,
named AWSS, is composed of photo-realistic pixel-wise annotated images under standard
and adverse conditions.

Weather Conditions Times-of-Day Photo-realism
Public

Availability

Normal Rain Fog Snow Daytime Nighttime / /

GTA-V [30] ✔ ✔ - - ✔ - ✔ ✔
Synscapes [39, 44] ✔ - - - ✔ - ✔ ✔
Virtual KITTI [15] ✔ ✔ ✔ - ✔ - - ✔
Synthia [32] ✔ ✔ - ✔ ✔ ✔ - -
SHIFT [37] ✔ ✔ ✔ - ✔ ✔ ✔ ✔
AWSS (Ours) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Unlike the current methods that work only with a single weather condition, our approach
can handle the three main ones, i.e., rainy, foggy, and snowy, as well as nighttime images.
The results show that our novel model achieves state-of-the-art results under adverse weather
conditions (0.49 mIoU on ACDC) while it maintains adequate performance under standard
conditions (0.75 mIoU on Cityscapes).

In summary, our contributions are three-fold: i) a novel synthetic-aware training proce-
dure that can be used to train on both synthetic and real data simultaneously. In particular,
we significantly improve DeepLabV3+ [5] robustness on adverse conditions by making its
encoder both weather and nighttime aware;1 ii) We extend the Silver [19] simulator to gener-
ate more photo-realistic and diverse adverse weather conditions and increase the supported
semantic segmentation classes; iii) leveraging our modified version of Silver, we generate a
new synthetic semantic segmentation dataset, the AWSS, composed of photo-realistic anno-
tated images spanning foggy, rainy, and snowy weather conditions and nighttime attributes.

2 Related Work
Synthetic data for semantic segmentation. The high performance of recent semantic seg-
mentation models is associated with the ability to train deep models on large-scale train-
ing data. The early real semantic segmentation datasets like CamVid [4], Stanford Back-
ground [22, 35, 36], and KITTI-Layout [2] are limited in terms of the number of training
samples, classes, resolution, and diversity. The problem is partially alleviated with the re-
cent availability of datasets like Cityscapes [9], ACDC [33], ADE20K [50], and Mapillary
Vistas [28]. Nevertheless, annotating large-scale datasets of high-resolution images is still
the bottleneck. At the same time, ensuring diverse training data under challenging attributes
like adverse weather conditions is not only dangerous, time-consuming, and hard to collect
but also cumbersome and subjective to human errors in the annotation process.

Synthetic data comes as a resort to handle all the above issues. Their success in com-
puter vision is specifically seen in semantic segmentation. Goyal et al. [16] demonstrate that
augmenting synthetic data with weakly annotated data can improve the performance on the
PASCAL VOC dataset [13]. Similarly, Richter et al. [30] generate synthetic training data
by utilizing the Grand Theft Auto V game. They show that training semantic segmentation
models on one third of the training split of CamVid [4] dataset along with their generated

1The synthetic data, code, and our modified version of the Silver [19] simulator are all publicly available under
the paper’s GitHub repository.
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synthetic data achieves superior results compared to training on the full CamVid [4]. In
parallel, Ivanovs et al. [18] augment the Cityscapes [9] dataset with synthetic images gen-
erated using the CARLA [11] simulator. They show that the performance improves when
compared to training only on Cityscapes [9]. Similar to these works, we use synthetic data
to boost the performance of semantic segmentation models. However, we tackle the domain
shift problem using synthetic data and a synthetic-aware training procedure.
Domain adaptation in semantic segmentation. A major limitation of synthetic data is the
domain shift: models trained on synthetic data do not perform well on real-world data [12,
34, 47]. Sankaranarayanan et al. [34] propose a Generative Adversarial Network (GAN)
based approach that minimizes the distance between the encodings of both domains. They
show that their approach can boost the performance of synthetic-to-real domain adaptation
tasks. Our work is similar to theirs as we use synthetic data for domain adaptation and pro-
pose a synthetic-aware training procedure. However, our work tackles this problem under
harder set-ups utilizing synthetic data to mitigate standard-to-adverse domain shifts. In the
same context, Alshammari et al. [1] address standard to foggy weather domain shift by us-
ing an adversarial training strategy that guides the model to produce outputs close to the
target domain. Similarly, Ma et al. [24] tackle standard weather to foggy weather domain
adaptation using both fog and style variations by adopting a Cumulative style-fog-dual dis-
entanglement Domain Adaptation method (CuDA-Net). Alternatively, Xu et al. [46] address
the daytime to nighttime domain shift. They utilize a novel Curriculum Domain Adaptation
method (CDAda) that uses labeled synthetic nighttime images. Our method is closely re-
lated to these works. However, we tackle domain adaptation from a standard domain (i.e.,
daytime and normal weather condition) to an adverse domain (i.e., nighttime and adverse
weather conditions such as rain, fog, and snow).

3 The AWSS Dataset

There have been many synthetic datasets proposed for the semantic segmentation problem.
However, they are usually non-photo-realistic such as Synthia [32] and Virtual KITTI [15],
limited in diversity such as GTA-V [30] and Synscapes [39, 44] as clearly demonstrated in
Table 1. Recently, SHIFT [37] dataset was introduced, which is photo-realistic and diverse
similar to our generated synthetic dataset but does not cover the snowy weather.

We extend Silver, proposed by Kerim et al. [19], to generate adverse weather photo-
realistic images along with their corresponding ground-truth for the semantic segmentation
task. We generate the Adverse Weather Synthetic Segmentation (AWSS) dataset, which
comprises 1,250 images with a resolution of 1,200× 780 pixels and spans normal, rainy,
foggy, and snowy weather conditions at daytime and nighttime. It follows the same conven-
tions, i.e., classes definitions and color encoding, as Cityscapes [9] and ACDC [33] datasets.
However, we limit the number of classes to 10, namely Road, Sidewalk, Building, Pole, Traf-
fic Light, Traffic Sign, Vegetation, Sky, Person, and Car. Figure 2 shows sample images from
the AWSS dataset spanning various standard and challenging attributes.

Extensions to the Silver framework. Silver is based on the Unity game engine [41]. It
allows users to create 3D virtual worlds by only specifying a set of scene descriptive param-
eters like the weather condition, time-of-the-day, number of cars and humans, camera type,
and lens artifacts. The simulator achieves photo-realism by using the recent High Definition
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Figure 2: Samples from AWSS dataset. Our generated AWSS synthetic dataset spans
normal, rainy, foggy, snowy, and nighttime attributes.

Rendering Pipeline (HDRP). In addition, the simulator applies a set of Procedural Content
Generation (PCG) concepts to generate, populate, and control the scenes [19].
i) Adverse conditions. The original simulator can simulate standard and adverse weather
conditions at daytime and nighttime but with a limited photo-realism and diversity. For
each weather condition, we diversify weather severeness, time-of-the-day, and other scene
elements if not specified. Based on the environment being simulated, scene elements ma-
terials, shaders and textures are selected from a predefined large set. We customize and
integrate Procedural Terrain [43] with Adobe Substance materials [25] to simulate photo-
realistic snow accumulation on ground, mud, mold, wet surfaces, and water puddles. Water
drops splashes on the ground are simulated by customizing the Unity particle system. Rain
splash intensity is controlled by the rain weather severeness which is sampled from a uni-
form distribution. Additionally, we simulate slightly foggy weather condition once heavy
rain is simulated. For nighttime simulation, street lights are turned on and their intensity is
randomized. Some of these lights are flickered or turned off to increase diversity.
ii) Dash camera mode. Initially Silver simulates Unmanned Aerial Vehicle (UAV) and
first-person view cameras. However, most existing semantic segmentation datasets like
Cityscapes [9] and ACDC [33] datasets are recorded using a dash camera mounted on a
car. To generate our AWSS dataset, we develop the dash camera mode to facilitate this task.
Furthermore, to increase view angle diversity, we simulate vertical and horizontal lens shifts.
iii) Semantic segmentation automatic ground-truth. The simulator supports semantic
segmentation automatic ground-truth generation. However, the number of semantic classes
was limited to 4: humans, ground, buildings, and trees. We extend the number of supported
classes by adding new elements to the scene like traffic signs and modify the road mesh into
road and sidewalk. At the same time, we customize the ground-truth generation pipeline to
match Cityscapes [9] color codes and conventions. With our extension, Silver now can pro-
vide semantic segmentation ground-truth for 10 classes, as specified earlier in this section.

4 Methodology
We aim to reduce the domain shift in adverse weather conditions while not acquiring addi-
tional real data. Hence, we propose a novel training approach that leverages synthetic data,
while making the architecture aware of the weather condition and nighttime. Our architecture
is trained on both synthetic and real data simultaneously (see Figure 3). Our methodology
is based on three components: i) adding two simple networks WAS and TAS that work as
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Figure 3: An overview of our proposed architecture. DCNN of DeepLabV3+ [5] is forced
to learn weather and daytime-nighttime specific and roboust features by the means of multi-
task learning. WAS and TAS branches learn to predict weather and daytime-nighttime, re-
spectively. At the same time, they guide the encoder and specifically DCNN to learn extract-
ing robust features under adverse and standard conditions.

supervisors to teach the model to learn weather and nighttime specific features; ii) the full-
model is trained using multi-task learning where the baseline learn semantic segmentation
and WAS and TAS learns to predict weather condition and day-night, respectively; iii) the
model is trained on images from synthetic domain Dadv−synth and real domain Dstand−real in
alternating fashion to ensure that the model learn to extract adverse weather features only
from synthetic data which presents a proxy of the adverse real domain Dadv−real . At the
same time, it does not overfit to synthetic data and still ensure that the architecture other
components leverage real data. Throughout the paper, Dstand−real , Dadv−real , and Dadv−synth
are represented by Cityscapes [9], ACDC [33], and AWSS datasets, respectively.
Weather and nighttime aware encoder. We use the DeepLabV3+ [5] architecture because
of its powerful encoder-decoder architecture. Originally, it is assumed that the encoder will
learn how to extract low-level and high-level features independent of weather and illumi-
nation conditions. This prevents the model from learning how to extract weather-specific
features, resulting in low-quality features being fed to the decoder. The problem becomes
even harder without training samples under these conditions.

To alleviate this problem, we focus on the Deep Convolutional Neural Network (DCNN)
which is a modified version of Xception [8]. We leverage multi-task learning to enforce
the encoder to learn weather and time specific features. We add two simple identical mod-
els Weather-Aware-Supervisor (WAS) and Time-Aware-Supervisor (TAS). Each model is
composed of two 3×3 atrous 2D convolutions with a rate of 2 and padding of 6. Each con-
volution is followed by a batch normalization and a rectified linear unit (ReLU). After this,
the feature map is flattened and fed to 3 fully connected layers. The last layer predicts the
weather for WAS and the daytime-nighttime for TAS. It is worth noting that WAS and TAS
are only activated in the training process to guide the feature extraction learning process.
Multi-task learning to improve semantic segmentation. In the original implementation of
DeepLabV3+ [5], the output of DCNN is passed to the remaining part of the encoder and
to the decoder. In our implementation, we also feed the output of DCNN to WAS and TAS.
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Table 2: mIoU results for our approach Vs. standard domain adaptation methods.
Training our weather and nighttime-aware architecture on both Cityscapes [9] and AWSS,
improves the performance on ACDC [33] dataset and achieves adequate peformance on
Cityscapes [9]. Best results are bolded. Fnt stands for Fine-Tuned.

ACDC Cityscapes

Rain Fog Snow Night Overall Overall

DeepLabV3+ [5] Baseline 0.41 0.46 0.36 0.17 0.35 0.78
FnT on AWSS 0.44 0.48 0.47 0.19 0.39 0.59

HRNet [48] Baseline 0.46 0.42 0.41 0.09 0.35 0.75
FnT on AWSS 0.47 0.49 0.35 0.14 0.36 0.51

DANet [14] Baseline 0.47 0.57 0.44 0.21 0.42 0.82
FnT on AWSS 0.48 0.58 0.48 0.26 0.45 0.74

PSPNet [49] Baseline 0.49 0.54 0.43 0.20 0.41 0.86
FnT on AWSS 0.52 0.56 0.46 0.18 0.43 0.86

Ours Full-Model 0.57 0.60 0.50 0.27 0.49 0.75

The total objective to train the new architecture is defined as:

min
θ

L= LSegment +α ×LWAS +β ×LTAS, (1)

where LSegment is the original loss used to train DeepLabV3+ [5], LWAS and LTAS are the
cross-entropy losses utilized to train WAS and TAS, respectively. α and β are scalars to
ensure numerical stability during the training and to give more emphasis to the main loss,
i.e., LSegment . It should be noted that each loss is back-propagated separately. LSegment is
back-propagated over all the architecture except WAS and TAS. On the other hand, LWAS
and LTAS are back-propagated only to DCNN.

Synthetic-aware training procedure. Training on source domain and fine-tuning on the
target domain is a well-known approach to mitigate the domain gap [40]. However, it is not
practical as it requires annotated real data from the target domain which may not be always
affordable. Furthermore, training the model on data from one distribution and then forcing
the model to learn a new distribution limits the ability of the network to learn and may not
converge to a global minima.

Thus, we propose training our modified DeepLabV3+ [5] on data from both synthetic
and real distributions simultaneously and from scratch. For that aim, we train in alter-
nating fashion: one batch from Dstand−real and next batch from Dadv−synth. At the same
time, since the aim is to learn how to extract useful features under adverse conditions, we
freeze DCNN weights when training on a batch from Dstand−real and update them for a batch
from Dadv−synth. It is worth noting that all other weights are updated for data from both do-
mains. This strategy encourages the encoder to leverage synthetic data to better learn feature
extraction for the target domain while it ensures that the decoder is learning how to interpret
both features to perform segmentation task under standard and adverse conditions.
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5 Experiments
Datasets. For training experiments, we use two datasets: AWSS dataset and the train-
ing split of Cityscapes [9] dataset. For evaluation, we use validation splits of Cityscapes
and ACDC [33] datasets. The three datasets follow the same conventions and color codes.
Cityscapes comprises 2975 training images and 500 validation images. It is captured in urban
scenes under normal weather conditions in the daytime. ACDC validation split comprises
506 images spanning rainy, foggy, snowy weather conditions and nighttime attributes.
Implementation details. Experiments are conducted on a Tesla V100 GPU. For all experi-
ments, we keep the default parameters of the authors. For our adopted DeepLabV3+ archi-
tectures, we use a batch size of 4 while we keep all other parameters same as DeepLabV3+.
For DeepLabV3+ baseline, our architecture, and all ablation study experiments, we train for
30K iterations. We set α = β = 10−5, as these values achieved the best results.
Baselines. To analyse the robustness of recent semantic segmentation methods under ad-
verse conditions, we use DeepLabV3+ [5], HRNet [48], DANet [14], and PSPNet [49].
Evaluation metric. We use the common Mean Intersection over Union (mIoU) [5, 14, 48,
49] on the validation sets of Cityscapes and ACDC similar to [6, 26, 45].

5.1 Results
Before discussing our architecture results, we will discuss how the domain shift degrades the
state-of-the-art, and the improvements achieved by fine-tuning on synthetic data.
Standard-Adverse domain shift. As shown by our results in Table 2, the performance of
recent methods clearly degrade under adverse weather conditions and at nighttime (see rows
Baseline). Additionally, it seems that snow and nighttime represent a clear challenge for re-
cent models. Snow causes a drastic change in scene appearance: falling snow particles, snow
on pavements and other scene elements makes these objects considerably different compared
to what the model learned in the training phase. Thus, the model struggles to segment these
elements. Similarly, nighttime scenes with the radical decrease in illumination presents a
major challenge for segmentation methods.
Domain adaptation using synthetic data. Transfer learning is usually applied to handle a
domain shift. However, although it improves the performance on the target domain, it gener-
ally degrades the performance on the source domain. As shown in Table 2 (FnT on AWSS),
we can improve the performance of each semantic segmentation model. For some attributes
like night and snow, the improvement was more than 50% (e.g. HRNet [48] under night).
Generally, each semantic segmentation model was able to leverage AWSS to improve its
performance for each adverse attribute. However, when evaluating these fine-tuned models
on the original domain (Cityscapes), we see a clear degradation in performance. This degra-
dation was more severe for some models like HRNet [48] while it was slight for PSPNet [49]
Weather and night aware architecture. While the previous solution is simple, the im-
provement on the target domain was limited, and the performance on the source domain was
sharply degraded. As a remedy, our architecture based solution achieves the best results on
the target domain and it maintains an adequate performance on the source domain. As re-
ported in Table 2, making the model aware of the weather condition and daytime-nighttime
attributes of the images in the training phase helps the model to learn how to extract more effi-
cient features under both standard and challenging scenarios. Qualitative results are shown in
Figure 4. Furthermore, per-class results are demonstrated in Table 3, our model achieves the
best results on Road, Sidewalk, Building, and Person semantic classes. The largest improve-
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Table 3: Per-class mIoU results on ACDC [33] dataset. Our model achieves the best
overall results on ACDC [33]. It maintains the best results on Road, Sidewalk, Building, and
Person classes. Best and second best results are bolded and underlined, respectively.

Road Sidewalk Building Pole Tr. Light Tr. Sign Vegetation Sky Person Car Overall

DeepLabV3+ 0.71 0.22 0.31 0.18 0.22 0.29 0.72 0.38 0.24 0.23 0.35
HRNet 0.55 0.16 0.44 0.14 0.28 0.24 0.66 0.72 0.07 0.19 0.35
DANet 0.68 0.11 0.19 0.28 0.54 0.67 0.26 0.65 0.29 0.53 0.42
PSPNet 0.63 0.12 0.60 0.30 0.48 0.41 0.62 0.61 0.21 0.17 0.41
Ours 0.79 0.40 0.63 0.25 0.26 0.33 0.69 0.66 0.32 0.52 0.49

A
C

D
C

C
S

DeepLabV3+Input HRNet DANet PSPNet Ours Ground Truth

Snowy

Rainy

Night

Foggy

Normal

Figure 4: Visual comparison between baselines and our approach. Segmentation results
are shown on ACDC [33] and Cityscapes [9] dataset, respectively.

ment was on the Sidewalk which is around 82% improvement compared to DeepLabV3+,
the best performing baseline on this class. As expected, snow and rain changes the visual
appearance of this class significantly. This is because of snow accumulation, footsteps on
snow, rain splash and mud, in addition to light reflection due to wet surface when raining.

5.2 Ablation Study
To understand the effect of each design decision, we perform several experiments.
Training data type. We train the baseline model on AWSS from scratch (Table 4 first row).
As expected, training on synthetic data alone does not achieve satisfactory results due to
domain gap between synthetic and real data. Thus, this suggests that AWSS can be used as
complementary to the real data and not as an alternative. On the other hand, training the
model from scratch on standard weather will perform well on these conditions but will fail
under challenging conditions (Table 4 second row).
Training strategy. As shown in Table 4 third row, the standard method of transfer learning
(fine-tuning the last layers on the target domain) improves the performance on the target do-
main but degrades the performance on the source domain.
Weather-Time awareness. Our approach achieves the best results under adverse condi-
tions while still maintaining a satisfactory performance under standard conditions. Making
the model synthetic aware and training the model without weather and nighttime-awareness
achieve better results on the source domain but low performance on the target domain, com-
pared to fine-tuning experiment. Adding the weather awareness to the model, i.e WAS,
improves the performance at standard and adverse conditions. All adverse weather attributes
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Table 4: Ablation analysis of weather and time awareness on performance. Making
the DeepLabV3+ weather and time aware improved the performance significantly at both
normal weather, i.e. Cityscapes [9] (CS), and adverse weather, i.e. ACDC [33], scenarios.
Best and second best results are bolded and underlined, respectively.

Training Mode ACDC Cityscapes
Rain Fog Snow Night Overall Overall

Baseline
scratch on AWSS 0.24 0.25 0.26 0.11 0.22 0.27

scratch on CS 0.41 0.46 0.36 0.17 0.35 0.78
scratch on CS and fine-tuned on AWSS 0.44 0.48 0.47 0.19 0.39 0.59

Ours
scratch on CS and AWSS 0.41 0.43 0.38 0.19 0.35 0.69

scratch on CS and AWSS + Weather Aware 0.49 0.55 0.47 0.20 0.43 0.73
scratch on CS and AWSS + Weather and Nighttime Aware 0.57 0.60 0.50 0.27 0.49 0.75

were improved clearly as expected but the night attribute maintained a slight improvement.
Finally, making the model aware of nighttime too, boosts significantly the performance un-
der nighttime. Interestingly, it improves also the performance of the other weather conditions
too. This is expected as TAS and WAS teachers allow the model to learn weather specific
and nighttime-specific robust features which enables the model to achieve better results un-
der these challenging conditions.

6 Conclusions
We introduce a novel synthetic dataset, the AWSS, that covers various adverse conditions.
We show that fine-tuning four state-of-the-art semantic segmentation models improve per-
formance under adverse conditions but degrades the performance under standard conditions.
Our proposed solution shows that making the model aware of the synthetic data and utilizing
weather-aware-supervisor and time-aware-supervisor achieves the best results under adverse
weather conditions while maintaining an adequate performance under standard conditions.
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